Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Chromatogr A ; 1719: 464766, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428339

RESUMEN

Chromatographers often employ fully aqueous mobile phases to retain highly polar compounds in reversed-phase liquid chromatography (RPLC). However, when the flow rate is interrupted, either accidentally or intentionally, a substantial loss in retention occurs due to the spontaneous dewetting of water from the hydrophobic surface of conventional RPLC-C18 particles. Previous studies have shown that maintaining a low C18 surface coverage (approximately 1.5 µmol/m2) can mitigate water dewetting by increasing chain disorder, facilitating the intercalation of water clusters between the C18-bonded chains, and keeping the mesopores wetted. In this research, we explore the potential and additional benefits of using two-component surface bonding materials (C8/C18 and PhenylHexyl (PhHx)/C18) at a constant and low total surface coverage of 1.51 ± 0.15 µmol/m2. We synthesized seven one- and two-component modified silica particles with a volume average particle size of 5.22 µm and an average mesopore size of 104 Å. The surface coverage was increased from 0 to 0.54, 1.00, and to 1.66 µmol2 for C8 chains and from 0 to 0.52, 0.70, and to 1.65 µmol2 for PhHx ligands. To prevent interactions between water and any unreacted silanols, all seven derivatized particles were heavily endcapped with trimethylsilane (TMS) reagent. The fraction of the surface area remaining in contact with water was determined by measuring the retention times of weakly (thiourea) and strongly (thymine) retained compounds at intervals of 1, 2, 4, 8, 16, 32, and 64 minutes following the cessation of flow. Two distinct column temperatures, 24°C and 60°C, were employed in the experiments. Retention losses were found to be minimized in the presence of a small quantity of C8 chains (less than 40% of the total surface coverage). Additionally, it is essential to consider substantial fractions of PhHx chains, as long as the presence of the PhHx ligand does not significantly impact retention and selectivity. Combining mixed RPLC bondings with a low total surface coverage of approximately 1.5 µmol/m2 emerges as a viable solution for further minimizing retention loss in standard C18-bonded RPLC columns, particularly within the surface coverage range of 2.5-3.0 µmol/m2.


Asunto(s)
Cromatografía de Fase Inversa , Dióxido de Silicio , Cromatografía de Fase Inversa/métodos , Dióxido de Silicio/química , Cromatografía Liquida , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas
2.
FEBS J ; 291(5): 865-883, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37997610

RESUMEN

Mastoparans are cationic peptides with multifunctional pharmacological properties. Mastoparan-R1 and mastoparan-R4 were computationally designed based on native mastoparan-L from wasps and have improved therapeutic potential for the control of bacterial infections. Here, we evaluated whether these peptides maintain their activity against Escherichia coli strains under a range of salt concentrations. We found that mastoparan-R1 and mastoparan-R4 preserved their activity under the conditions tested, including having antibacterial activities at physiological salt concentrations. The overall structure of the peptides was investigated using circular dichroism spectroscopy in a range of solvents. No significant changes in secondary structure were observed (random coil in aqueous solutions and α-helix in hydrophobic and anionic environments). The three-dimensional structures of mastoparan-R1 and mastoparan-R4 were elucidated through nuclear magnetic resonance spectroscopy, revealing amphipathic α-helical segments for Leu3-Ile13 (mastoparan-R1) and Leu3-Ile14 (mastoparan-R4). Possible membrane-association mechanisms for mastoparan-R1 and mastoparan-R4 were investigated through surface plasmon resonance and leakage studies with synthetic POPC and POPC/POPG (4:1) lipid bilayers. Mastoparan-L had the highest affinity for both membrane systems, whereas the two analogs had weaker association, but improved selectivity for lysing anionic membranes. This finding was also supported by molecular dynamics simulations, in which mastoparan-R1 and mastoparan-R4 were found to have greater interactions with bacteria-like membranes compared with model mammalian membranes. Despite having a few differences in their functional and structural profiles, the mastoparan-R1 analog stood out with the highest activity, greater bacteriostatic potential, and selectivity for lysing anionic membranes. This study reinforces the potential of mastoparan-R1 as a drug candidate.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Péptidos , Animales , Péptidos/farmacología , Venenos de Avispas/farmacología , Escherichia coli , Cloruro de Sodio , Computadores , Mamíferos
3.
Peptides ; 167: 171049, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37390898

RESUMEN

Bacteriocins are a large family of bacterial peptides that have antimicrobial activity and potential applications as clinical antibiotics or food preservatives. Circular bacteriocins are a unique class of these biomolecules distinguished by a seamless circular topology, and are widely assumed to be ultra-stable based on this constraining structural feature. However, without quantitative studies of their susceptibility to defined thermal, chemical, and enzymatic conditions, their stability characteristics remain poorly understood, limiting their translational development. Here, we produced the circular bacteriocin enterocin NKR-5-3B (Ent53B) in mg/L quantities using a heterologous Lactococcus expression system, and characterized its thermal stability by NMR, chemical stability by circular dichroism and analytical HPLC, and enzymatic stability by analytical HPLC. We demonstrate that Ent53B is ultra-stable, resistant to temperatures approaching boiling, acidic (pH 2.6) and alkaline (pH 9.0) conditions, the chaotropic agent 6 M urea, and following incubation with a range of proteases (i.e., trypsin, chymotrypsin, pepsin, and papain), conditions under which most peptides and proteins degrade. Ent53B is stable across a broader range of pH conditions and proteases than nisin, the most widely used bacteriocin in food manufacturing. Antimicrobial assays showed that differences in stability correlated with differences in bactericidal activity. Overall, this study provides quantitative support for circular bacteriocins being an ultra-stable class of peptide molecules, suggesting easier handling and distribution options available to them in practical applications as antimicrobial agents.


Asunto(s)
Bacteriocinas , Nisina , Bacteriocinas/farmacología , Nisina/farmacología , Antibacterianos/farmacología , Péptido Hidrolasas
4.
Bioconjug Chem ; 34(6): 1105-1113, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37232456

RESUMEN

Malaria continues to impose a global health burden. Drug-resistant parasites have emerged to each introduced small-molecule therapy, highlighting the need for novel treatment approaches for the future eradication of malaria. Herein, targeted drug delivery with peptide-drug conjugates (PDCs) was investigated as an alternative antimalarial therapy, inspired by the success of emerging antibody-drug conjugates utilized in cancer treatment. A synthetic peptide derived from an innate human defense molecule was conjugated to the antimalarial drug primaquine (PQ) to produce PDCs with low micromolar potency toward Plasmodium falciparum in vitro. A suite of PDCs with different design features was developed to identify optimal conjugation site and investigate linker length, hydrophilicity, and cleavability. Conjugation within a flexible spacer region of the peptide, with a cleavable linker to liberate the PQ cargo, was important to retain activity of the peptide and drug.


Asunto(s)
Antimaláricos , Péptidos de Penetración Celular , Malaria Falciparum , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Péptidos de Penetración Celular/farmacología , Preparaciones Farmacéuticas , Primaquina/química , Primaquina/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/parasitología , Plasmodium falciparum , Malaria Falciparum/tratamiento farmacológico
5.
J Lesbian Stud ; 26(4): 323-337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35975809

RESUMEN

This article examines how the 2019 period drama Gentleman Jack generates its affirmative project of lesbian televisual representation. GJ turns negative realities of gender and sexuality nonconformity in the nineteenth century to productive, affirmative use through what we view as a highly effective strategy of visually engaging viewers as witnesses to and coconspirators in Lister's journey through Lister's fourth wall breaks and the camera's prioritization of her perspective. We analyze GJ's various overlooked characters and reinscribed power hierarchies, which we argue results from both prioritizing Lister's perspective and fans' tendencies to view Lister through "pink-tinted glasses" as a result of cathexis with Lister. Through close reading of scenes illustrating social censorship, Lister's nonconforming gender performance, the labor behind Lister's wealth, and marriage's promise of happiness, we assert that the series misses subtle opportunities to critique the hierarchies on which Lister's exceptionalism relies. Pulling from Janet Lea's reception analysis, this article further asserts that fans interpret GJ politically as well as for entertainment, and the elements to which they most strongly cathect reflect what fans most desire from LGBTQ + representational politics. Ultimately, we argue that if these continue to be the priorities of LGBTQ + fans and activist organizations today, the characters overlooked in Lister's pursuit of her own happiness offer audiences the opportunity to reflect on who may be sidelined or undercut in contemporary pursuits of LGBTQ + affirmation.


Asunto(s)
Homosexualidad Femenina , Femenino , Humanos , Política , Sexualidad
6.
J Chromatogr A ; 1676: 463262, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35779389

RESUMEN

Size exclusion chromatography has become an essential tool for the protein therapeutics industry. Conceptually, it is a simple form of chromatography that is driven by entropy and sieving effects. An ideal size exclusion column would exhibit no adsorptive interactions between its internal surfaces and the solutes being analysed, but that is not easily achieved. To this end, we have studied the utility of three unique packing materials in pursuit of additional column chemistries that might be less prone to interacting with proteins. These packing materials were each prepared from bridged ethylene hybrid organic/inorganic particles but uniquely derivatized into either hydroxy terminated PEO bonded, methoxy terminated PEO bonded, or diol bonded packing materials. All three materials were packed into column hardware modified with hydrophilic hybrid surface technology (h-HST) so that packing material effects could be more clearly observed without any influence from the secondary interactions that can originate from metal hardware. Non-specific interactions were compared for various challenging protein samples in the presence of ammonium acetate (volatile) and phosphate buffered saline (non-volatile) buffers. It was reconfirmed that the h-HST column hardware mitigates a majority of non-desired secondary interactions. However, during studies on hydrophobic interactions, the new hydroxy terminated PEO packing material showed clear benefit to obtaining higher apparent recoveries to better ensure accurate aggregate quantitation. Further experiments were explored to show that a hydroxy terminated PEO column could be effectively paired with a mobile phase comprised of standard strength phosphate buffered saline to make a fast platform method capable of baseline resolving monoclonal antibody monomer and aggregate peaks within a 3 min analysis time.


Asunto(s)
Fosfatos , Proteínas , Cromatografía en Gel , Interacciones Hidrofóbicas e Hidrofílicas , Indicadores y Reactivos
7.
Environ Pollut ; 309: 119729, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35809710

RESUMEN

The treatment of contaminants from lignocellulosic biorefinery effluent has recently been identified as a unique challenge. This study focuses on removing phenolic contaminants and polycyclic aromatic hydrocarbons (PAHs) from lignocellulosic biorefinery wastewater (BRW) applying a laccase-assisted approach. Cassava waste was used as a substrate to produce the maximum yield of laccase enzyme (3.9 U/g) from Pleurotus ostreatus. Among the different inducers supplemented, CuSO4 (0.5 mM) showed an eight-fold increase in enzyme production (30.8 U/g) after 240 h of incubation. The catalytic efficiency of laccase was observed as 128.7 ± 8.47 S-1mM-1 for syringaldazine oxidation at optimum pH 4.0 and 40 °C. Laccase activity was completely inhibited by lead (II) ion, mercury (II) ion, sodium dodecyl sulphate, sodium azide and 1,4 dithiothretiol and induced significantly by manganese (II) ion and rhamnolipid. After treating BRW with laccase, the concentrations of PAHs and phenolic contaminants of 1144 µg/L and 46160 µg/L were reduced to 96 µg/L and 16100 µg/L, respectively. The ability of laccase to effectively degrade PAHs in the presence of different phenolic compounds implies that phenolic contaminants may play a role in PAHs degradation. After 240 h, organic contaminants were removed from BRW in the following order: phenol >2,4-dinitrophenol > 2-methyl-4,6-dinitrophenol > 2,3,4,6-tetrachlorophenol > acenaphthene > fluorine > phenanthrene > fluoranthene > pyrene > anthracene > chrysene > naphthalene > benzo(a)anthracene > benzo(a)pyrene > benzo(b)fluoranthene > pentachlorophenol > indeno(1,2,3-cd)pyrene > benzo(j) fluoranthene > benzo[k]fluoranthène. The multiple contaminant remediation from the BRW by enzymatic method, clearly suggests that the laccase can be used as a bioremediation tool for the treatment of wastewater from various industries.


Asunto(s)
Manihot , Pleurotus , Hidrocarburos Policíclicos Aromáticos , Lacasa/metabolismo , Lignina , Manihot/metabolismo , Fenoles/metabolismo , Pleurotus/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Aguas Residuales
8.
J Sep Sci ; 45(8): 1389-1399, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34937126

RESUMEN

We have characterized a sulfobetaine stationary phase based on 1.7 µm ethylene-bridged hybrid organic-inorganic particles, which is intended for use in hydrophilic interaction chromatography. The efficiency of a column packed with this material was determined as a function of flow rate, demonstrating a minimum reduced plate height of 2.4. The batch-to-batch reproducibility was assessed using the separation of a mixture of acids, bases, and neutrals. We compared the retention and selectivity of the hybrid sulfobetaine stationary phase to that of several benchmark materials. The hybrid sulfobetaine material gave strong retention for polar neutrals and high selectivity for methyl groups, hydroxy groups, and configurational isomers. Large differences in cation and anion retention were observed among the columns. We characterized the acid and base stability of the hybrid sulfobetaine stationary phase, using accelerated tests at pH 1.3 and 11.0, both at 70°C. The results support a recommended pH range of 2-10. We also investigated the performance of columns packed with this material for metal-sensitive analytes, comparing conventional stainless steel column hardware to hardware that incorporates hybrid surface technology to mitigate interactions with metal surfaces. Compared to the conventional columns, the hybrid surface technology columns showed a greatly improved peak shape.


Asunto(s)
Cromatografía Liquida , Cromatografía Liquida/métodos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Reproducibilidad de los Resultados
9.
Cell Mol Life Sci ; 79(1): 38, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-34971427

RESUMEN

Bacteria that occupy an intracellular niche can evade extracellular host immune responses and antimicrobial molecules. In addition to classic intracellular pathogens, other bacteria including uropathogenic Escherichia coli (UPEC) can adopt both extracellular and intracellular lifestyles. UPEC intracellular survival and replication complicates treatment, as many therapeutic molecules do not effectively reach all components of the infection cycle. In this study, we explored cell-penetrating antimicrobial peptides from distinct structural classes as alternative molecules for targeting bacteria. We identified two ß-hairpin peptides from the horseshoe crab, tachyplesin I and polyphemusin I, with broad antimicrobial activity toward a panel of pathogenic and non-pathogenic bacteria in planktonic form. Peptide analogs [I11A]tachyplesin I and [I11S]tachyplesin I maintained activity toward bacteria, but were less toxic to mammalian cells than native tachyplesin I. This important increase in therapeutic window allowed treatment with higher concentrations of [I11A]tachyplesin I and [I11S]tachyplesin I, to significantly reduce intramacrophage survival of UPEC in an in vitro infection model. Mechanistic studies using bacterial cells, model membranes and cell membrane extracts, suggest that tachyplesin I and polyphemusin I peptides kill UPEC by selectively binding and disrupting bacterial cell membranes. Moreover, treatment of UPEC with sublethal peptide concentrations increased zinc toxicity and enhanced innate macrophage antimicrobial pathways. In summary, our combined data show that cell-penetrating peptides are attractive alternatives to traditional small molecule antibiotics for treating UPEC infection, and that optimization of native peptide sequences can deliver effective antimicrobials for targeting bacteria in extracellular and intracellular environments.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Proteínas de Unión al ADN/farmacología , Péptidos Cíclicos/farmacología , Animales , Células de la Médula Ósea , Membrana Celular/efectos de los fármacos , Células Cultivadas , Eritrocitos , Cangrejos Herradura/metabolismo , Humanos , Ratones Endogámicos C57BL , Cultivo Primario de Células
10.
ACS Chem Biol ; 16(2): 414-428, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33533253

RESUMEN

Peptides are being developed as targeted anticancer drugs to modulate cytosolic protein-protein interactions involved in cancer progression. However, their use as therapeutics is often limited by their low cell membrane permeation and/or inability to reach cytosolic targets. Conjugation to cell penetrating peptides has been successfully used to improve the cytosolic delivery of high affinity binder peptides, but cellular uptake does not always result in modulation of the targeted pathway. To overcome this limitation, we developed "angler peptides" by conjugating KD3, a noncell permeable but potent and specific peptide inhibitor of p53:MDM2 and p53:MDMX interactions, with a set of cyclic cell-penetrating peptides. We examined their binding affinity for MDM2 and MDMX, the cell entry mechanism, and role in reactivation of the p53 pathway. We identified two angler peptides, cTAT-KD3 and cR10-KD3, able to activate the p53 pathway in cancer cells. cTAT-KD3 entered cells via endocytic pathways, escaped endosomes, and activated the p53 pathway in breast (MCF7), lung (A549), and colon (HCT116) cancer cell lines at concentrations in the range of 1-12 µM. cR10-KD3 reached the cytosol via direct membrane translocation and activated the p53 pathway at 1 µM in all the tested cell lines. Our work demonstrates that nonpermeable anticancer peptides can be delivered into the cytosol and inhibit intracellular cancer pathways when they are conjugated with stable cell penetrating peptides. The mechanistic studies suggest that direct translocation leads to less toxicity, higher cytosol delivery at lower concentrations, and lower dependencies on the membrane of the tested cell line than occurs for an endocytic pathway with endosomal escape. The angler strategy can rescue high affinity peptide binders identified from high throughput screening and convert them into targeted anticancer therapeutics, but investigation of their cellular uptake and cell death mechanisms is essential to confirming modulation of the targeted cancer pathways.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Péptidos Cíclicos/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/toxicidad , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Eritrocitos , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/toxicidad , Conformación Proteica en Hélice alfa
11.
ACS Chem Biol ; 16(2): 429-439, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33512150

RESUMEN

The epidermal growth-factor-like domain A (EGF-A) of the low-density lipoprotein (LDL) receptor is a promising lead for therapeutic inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the clinical potential of EGF-A is limited by its suboptimal affinity for PCSK9. Here, we use phage display to identify EGF-A analogues with extended bioactive segments that have improved affinity for PCSK9. The most potent analogue, TEX-S2_03, demonstrated ∼130-fold improved affinity over the parent domain and had a reduced calcium dependency for efficient PCSK9 binding. Thermodynamic binding analysis suggests the improved affinity of TEX-S2_03 is enthalpically driven, indicating favorable interactions are formed between the extended segment of TEX-S2_03 and the PCSK9 surface. The improved affinity of TEX-S2_03 resulted in increased activity in competition binding assays and more efficient restoration of LDL receptor levels with clearance of extracellular LDL cholesterol in functional cell assays. These results confirm that TEX-S2_03 is a promising therapeutic lead for treating hypercholesterolemia. Many EGF-like domains are involved in disease-related protein-protein interactions; therefore, our strategy for engineering EGF-like domains has the potential to be broadly implemented in EGF-based drug design.


Asunto(s)
Fragmentos de Péptidos/metabolismo , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Secuencia de Aminoácidos , Células Hep G2 , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Biblioteca de Péptidos , Proproteína Convertasa 9/química , Unión Proteica , Dominios Proteicos , Ingeniería de Proteínas , Receptores de LDL/química , Receptores de LDL/genética , Termodinámica
12.
Chembiochem ; 22(8): 1415-1423, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33244888

RESUMEN

Agelaia-MPI and protonectin are antimicrobial peptides isolated from the wasp Parachartergus fraternus that show antimicrobial and neuroactive activities. Previously, two analogues of these peptides, neuroVAL and protonectin-F, were designed to reduce nonspecific toxicity and improve potency. Here, the three-dimensional structures of neuroVAL, protonectin and protonectin-F were determined by using circular dichroism and NMR spectroscopy. Antibacterial, antifungal, cytotoxic and hemolytic activities were tested for the parent peptides and analogues. All peptides showed moderate antimicrobial activity against Gram-positive bacteria, with agelaia-MPI being the most active. Protonectin and protonectin-F were found to be toxic to cancerous and noncancerous cell lines. Internalization experiments revealed that these peptides accumulate inside both cell types. By contrast, neuroVAL was nontoxic to all tested cells and was able to enter cells without accumulating. In summary, neuroVAL has potential as a nontoxic cell-penetrating peptide, while protonectin-F needs further modification to realize its potential as an antitumor peptide.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Avispas/química , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Línea Celular , Humanos , Pruebas de Sensibilidad Microbiana
13.
J Sep Sci ; 44(5): 1005-1014, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33354922

RESUMEN

We have characterized Atlantis ethylene-bridged hybrid C18 anion-exchange, a mixed-mode reversed-phase/weak anion-exchange stationary phase designed to give greater retention for anions (e.g., ionized acids) compared to conventional reversed-phase materials. The retention and selectivity of this stationary phase were compared to that of three benchmark materials, using a mixture of six polar compounds that includes an acid, two bases, and three neutrals. The compatibility of the ethylene-bridged hybrid C18 anion-exchange material with 100% aqueous mobile phases was also evaluated. We investigated the batch-to-batch reproducibility of the ethylene-bridged hybrid C18 anion-exchange stationary phase for 27 batches across three different particle sizes (1.7, 2.5, and 5 µm) and found it to be comparable to that of one of the most reproducible C18 stationary phases. We also characterized the acid and base stability of the ethylene-bridged hybrid C18 anion-exchange stationary phase and the results show it to be usable over a wide pH range, from 2 to 10. The extended upper pH limit relative to silica-based reversed-phase/weak anion-exchange materials is enabled by the use of ethylene-bridged hybrid organic/inorganic particles. The improved base stability allows Atlantis ethylene-bridged hybrid C18 anion-exchange to be used with a wider range of mobile phase pH values, opening up a greater range of selectivity options.

14.
J Med Chem ; 64(5): 2523-2533, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33356222

RESUMEN

Peptides are regarded as promising next-generation therapeutics. However, an analysis of over 1000 bioactive peptide candidates suggests that many have underdeveloped affinities and could benefit from cyclization using a bridging linker sequence. Until now, the primary focus has been on the use of inert peptide linkers. Here, we show that affinity can be significantly improved by enriching the linker with functional amino acids. We engineered a peptide inhibitor of PCSK9, a target for clinical management of hypercholesterolemia, to demonstrate this concept. Cyclization linker optimization from library screening produced a cyclic peptide with ∼100-fold improved activity over the parent peptide and efficiently restored low-density lipoprotein (LDL) receptor levels and cleared extracellular LDL. The linker forms favorable interactions with PCSK9 as evidenced by thermodynamics, structure-activity relationship (SAR), NMR, and molecular dynamics (MD) studies. This PCSK9 inhibitor is one of many peptides that could benefit from bioactive cyclization, a strategy that is amenable to broad application in pharmaceutical design.


Asunto(s)
Inhibidores de PCSK9 , Péptidos Cíclicos/farmacología , Inhibidores de Proteasas/farmacología , Secuencia de Aminoácidos , Anticolesterolemiantes/química , Anticolesterolemiantes/metabolismo , Anticolesterolemiantes/farmacología , Ciclización , Células Hep G2 , Humanos , Lipoproteínas LDL/metabolismo , Simulación del Acoplamiento Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Proproteína Convertasa 9/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Unión Proteica , Receptores de LDL/metabolismo
15.
Biochim Biophys Acta Biomembr ; 1863(1): 183480, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979382

RESUMEN

Anticancer chemo- and targeted therapies are limited in some cases due to strong side effects and/or drug resistance. Peptides have received renascent interest as anticancer therapeutics and are currently being considered as alternatives and/or as complementary to biologics and small-molecule drugs. Gomesin, a disulfide-rich host defense peptide expressed in the Brazilian spider Acanthoscurria gomesiana selectively targets and disrupts cancer cell membranes. In the current study, we employed a range of biophysical methodologies with model membranes and bioassays to investigate the use of a cyclic analogue of gomesin as a drug scaffold to internalize cancer cells. We found that cyclic gomesin can internalize cancer cells via endocytosis and direct membrane permeation. In addition, we designed an improved non-disruptive and non-toxic cyclic gomesin analogue by incorporating D-amino acids within the scaffold. This improved analogue retained the ability to enter cancer cells and can be used as a scaffold to deliver drugs. Efforts to investigate the internalization mechanism used by host defense peptides, and to improve their stability, potency, selectivity and ability to permeate cancer cell membranes will increase the opportunities to repurpose peptides as templates for designing alternative anticancer therapeutic leads.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Proteínas de Artrópodos , Membrana Celular/metabolismo , Sistemas de Liberación de Medicamentos , Neoplasias/metabolismo , Arañas/química , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacocinética , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de Artrópodos/química , Proteínas de Artrópodos/farmacocinética , Proteínas de Artrópodos/farmacología , Membrana Celular/patología , Células HeLa , Humanos , Células MCF-7 , Neoplasias/tratamiento farmacológico , Neoplasias/patología
16.
Am J Trop Med Hyg ; 103(5): 1846-1851, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32975176

RESUMEN

Melioidosis is a neglected tropical disease caused by the Gram-negative soil bacterium Burkholderia pseudomallei. Current antibiotic regimens used to treat melioidosis are prolonged and expensive, and often ineffective because of intrinsic and acquired antimicrobial resistance. Efforts to develop new treatments for melioidosis are limited by the risks associated with handling pathogenic B. pseudomallei, which restricts research to facilities with biosafety level three containment. Closely related nonpathogenic Burkholderia can be investigated under less stringent biosafety level two containment, and we hypothesized that they could be used as model organisms for developing therapies that would also be effective against B. pseudomallei. We used microbroth dilution assays to compare drug susceptibility profiles of three B. pseudomallei strains and five nonpathogenic Burkholderia strains. Burkholderia humptydooensis, Burkholderia thailandensis, and Burkholderia territorii had similar susceptibility profiles to pathogenic B. pseudomallei that support their potential as safer in vitro models for developing new melioidosis therapies.


Asunto(s)
Antibacterianos/farmacología , Burkholderia/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Melioidosis/tratamiento farmacológico , Burkholderia/genética , Burkholderia/patogenicidad , Humanos , Especificidad de la Especie
17.
Chembiochem ; 21(24): 3463-3475, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-32656966

RESUMEN

This review highlights the predominant role that NMR has had in determining the structures of cyclotides, a fascinating class of macrocyclic peptides found in plants. Cyclotides contain a cystine knot, a compact structural motif that is constrained by three disulfide bonds and able to resist chemical and biological degradation. Their resistance to proteolytic degradation has made cyclotides appealing as drug leads. Herein, we examine the developments that led to the identification and conclusive determination of the disulfide connectivity of cyclotides and describe in detail the structural features of exemplar cyclotides. We also review the role that X-ray crystallography has played in resolving cyclotide structures and describe how racemic crystallography opened up the possibility of obtaining previously inaccessible X-ray structures of cyclotides.


Asunto(s)
Ciclotidas/química , Resonancia Magnética Nuclear Biomolecular , Cristalografía por Rayos X , Modelos Moleculares , Plantas/química , Conformación Proteica
18.
RSC Chem Biol ; 1(5): 405-420, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34458771

RESUMEN

Cell penetrating peptides (CPPs) are valuable tools for developing anticancer therapies due to their ability to access intracellular targets, including protein-protein interactions. cPF4PD is a newly described CPP designed from a transduction domain of the human defense protein platelet factor 4 (PF4), that also has antimalarial activity. The cPF4PD peptide recapitulates the helical structure of the PF4 domain and maintains activity against intracellular malaria parasites via a selective membrane-active mechanism. We hypothesized that cPF4PD and PF4-derived peptide analogues would enter cancer cells and have utility as scaffolds for delivering a peptide dual inhibitor (pDI) sequence with ability to inhibit p53:MDM2/X interactions and reactivate the p53 pathway. Here we designed and produced PF4 peptide and PF4 peptide-pDI grafted analogues with low micromolar activity toward melanoma and leukemia. Two grafted analogues achieved a stable helical structure and inhibited interaction with MDM2 and MDMX. These peptides reached the cytoplasm of cells but were unable to reactivate the p53 pathway. Instead, the cytotoxic mechanism was attributed to peptide binding to mitochondrial membranes that perturbed function within two hours of treatment. These studies of PF4-derived CPPs suggest their potential as scaffolds for delivering cell-impermeable cargoes into the cytoplasm of cells and highlight the importance of characterizing the internalization and cell death mechanism of designer peptide-based drugs.

19.
ACS Chem Biol ; 14(12): 2895-2908, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31714739

RESUMEN

Tachyplesin-I (TI) is a host defense peptide from the horseshoe crab Tachypleus tridentatus that has outstanding potential as an anticancer therapeutic lead. Backbone cyclized TI (cTI) has similar anticancer properties to TI but has higher stability and lower hemolytic activity. We designed and synthesized cTI analogues to further improve anticancer potential and investigated structure-activity relationships based on peptide-membrane interactions, cellular uptake, and anticancer activity. The membrane-binding affinity and cytotoxic activity of cTI were found to be highly dependent on peptide hydrophobicity and charge. We describe two analogues with increased selectivity toward melanoma cells and one analogue with the ability to enter cells with high efficacy and low toxicity. Overall, the structure-activity relationship study shows that cTI can be developed as a membrane-active antimelanoma lead, or be employed as a cell penetrating peptide scaffold that can target and enter cells without damaging their integrity.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Antineoplásicos/farmacología , Péptidos de Penetración Celular/farmacología , Proteínas de Unión al ADN/farmacología , Cangrejos Herradura/química , Péptidos Cíclicos/farmacología , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Antineoplásicos/química , Línea Celular , Péptidos de Penetración Celular/química , Proteínas de Unión al ADN/química , Humanos , Péptidos Cíclicos/química
20.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31455019

RESUMEN

Tachyplesin I, II and III are host defense peptides from horseshoe crab species with antimicrobial and anticancer activities. They have an amphipathic ß-hairpin structure, are highly positively-charged and differ by only one or two amino acid residues. In this study, we compared the structure and activity of the three tachyplesin peptides alongside their backbone cyclized analogues. We assessed the peptide structures using nuclear magnetic resonance (NMR) spectroscopy, then compared the activity against bacteria (both in the planktonic and biofilm forms) and a panel of cancerous cells. The importance of peptide-lipid interactions was examined using surface plasmon resonance and fluorescence spectroscopy methodologies. Our studies showed that tachyplesin peptides and their cyclic analogues were most potent against Gram-negative bacteria and melanoma cell lines, and showed a preference for binding to negatively-charged lipid membranes. Backbone cyclization did not improve potency, but improved peptide stability in human serum and reduced toxicity toward human red blood cells. Peptide-lipid binding affinity, orientation within the membrane, and ability to disrupt lipid bilayers differed between the cyclized peptide and the parent counterpart. We show that tachyplesin peptides and cyclized analogues have similarly potent antimicrobial and anticancer properties, but that backbone cyclization improves their stability and therapeutic potential.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacología , Línea Celular Tumoral , Ciclización , Estabilidad de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Estructura Molecular , Espectrometría de Fluorescencia , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...